EQUIVALENT INDEX APPROXIMATIONS AND LIMITATIONS
R. R. Willey, Opto Mechanik, Inc., P.O. Box 361907, Melbourne, FL 32935

ABSTRACT

The combination of appropriate thicknesses of high and low index layers to approximate an intermediate index material layer has been used and reported extensively. One version is referred to as the Herpin equivalent layer. This technique is very useful when a desired index is not available in a practical material. The mathematical descriptions of these approximations tend to obscure the intuitive understanding of the behavior of these layers under changes of wavelength and angle. We show these principles in graphical form and discuss the possibilities and limitations as compared to the materials approximated.

INTRODUCTION

When a given index of refraction is required to realize a particular thin film design but no suitable material is available, it is possible to approximate the desired index material with two other available materials of index greater and less than the desired index. This concept is usually referred to as the Herpin(1) index and Epstein(2) period. It has been used and described by Berning(3), Ohmer(4), Macleod(5), Liddell(6), etc. These authors, Rabinovitch and Ziv(7), and others have also pointed out that these approximations are not entirely equivalent except at one specific wavelength and angle of incidence. Knittel and Houzerkova(8) have described the use of equivalent layers at oblique incidence, and Costich(9) showed how to reduce polarization effects in coatings using equivalent index concepts. We show here in graphical form by means of admittance diagrams the principles of the Herpin index and symmetric periods attributed to Epstein, how they can be used, and how the limitations can be overcome if necessary.

EQUIVALENT LAYER PRINCIPLES

The typical broadband antireflection coating for the visible spectrum can be done with three layers of index 1.65, 2.1, and 1.38. The reflectance spectrum of a quarter-half-quarter wave (QHQ) stack of these materials is seen in Figure 1. At a central wavelength in the design, the admittance diagram would be as in Figure 2. If the 1.65 material was not available or we wanted to eliminate it, it could be replaced by a combination of layers made of the 2.1 and 1.38 materials which had approximately the equivalent behavior of the 1.65 layer. Figure 3 is used to show the principle in graphic form. When a QHQ of 1.65 index is deposited on a substrate of index 1.52, the admittance of the combination moves from point A to point Z along the semicircle labeled M for medium index. Any combination of layers which brings the admittance from point A to Z will have the same performance at this one wavelength and angle of incidence, but not necessarily at other wavelengths and angles. There are two Epstein periods that will

---

Fig. 1. Reflectance of a broadband visible antireflection coating of QHQ design with indices 1.65, 2.1, and 1.38 on a 1.52 index substrate.

Fig. 3. Admittance of a QHQ of index 1.65 (curve M from A to B). Epstein LRL period from ABE, Epstein LHL period from ADB, and the three-layer Herpin equivalent K from AKL.
satisfy the requirement. There is a low-high-low index (LHL) period illustrated by the path ABCZ and a HLH period as in ADEZ. The Epstein form uses 1st and 3rd layers that are the same thickness and a 2nd layer to suit. Generally there are only the two solutions that meet the symmetric three layer criterion and the relative thicknesses of the layers depend on the index to be approximated. Herrmann(10) described the 

non-symmetric extension of the three layer simulation where the approximation is further improved for an extended wavenumber region. Note also that there is a two layer non-symmetric solution of HL in path AFZ. The first use of this design is attributed to Rock(11). We will illustrate that the closer the admittance path of the approximation approaches the path of the layer being approximated, the more nearly the same as the approximated layer will be the performance of the design at all wavelengths and angles. This was also alluded to by Herrmann(10).

EPSTEIN PERIOD PERFORMANCE

The performance of the two Epstein periods used in the typical three layer QHQ broad band AR is shown in Figures 4, 5, and 6. The solid curves are the design with the 1.65 index layer, the dotted curves are the LHL Epstein period, and the dashed curves are the HLH Epstein period. Although the approximations are possibly practical solutions, they do illustrate the principles and the differences between the approximations. Note that the LHL curves are in all cases better than the HLH in replicating the 1.65 results. This can be inferred from Figure 3 where the LHL path lies closer to the M path than the HLH. The S polarization at 45 degrees angle of incidence shows the most dramatic differences of those illustrated.

NON-HERPIN-EPSTEIN APPROXIMATIONS

Figure 7 shows the performance of the two layer approximation shown in Figure 3 as AFZ. This is in design than the symmetric solutions in this case. This may be inferred from Figure 3 in that AFZ is everywhere closer to M than either the HLH or LHL approximations. Most of the four-layer/two-material AR's for the visible spectrum probably are closely related to this solution by design or accident. We automatically optimized a design with the LHL Epstein period plus a half wave of H followed by a CNOT of L where only the layers of the Epstein period were allowed to vary (1, 2, & 3). The first layer was reduced to essentially zero thickness and the result was in fact the AFZ seen in Figures 3 and 7.

These observations point intuitively to the possibility that a combination of many short layers which trace an admittance path very close to the path of the approximated layer should give a performance in all ways
the optical thicknesses of the H and L layers of the two layer solution and divided them each into ten equal parts which were alternated to make a 20 layer approximation of the 1.65 layer in a fashion after Southwell[12]. This produced a superior result to any of the approximations above, but we then let the automatic optimization vary the thickness of each of the twenty layers for further improvement. The resulting admittance diagram of the design is shown in Figure 8. It will be seen that the result is an admittance path which follows the 1.65 admittance path very closely. Figures 9, 10, 11, 12, and 13 compare the performance of the 20 layer approximation with the design using the 1.65 index. It can be seen that the differences are almost imperceptible and could be reduced to imperceptibility by further refinement.

![Fig. 7. Reflection of two-layer Herpin equivalent of 1.65 layer as in APS of Fig. 3.](image)

![Fig. 8. Admittance diagram at 526nm and normal incidence of the "three-layer" AR coating with the 1.45 index layer replaced by the optimized 20 layer "Herpin" equivalent.](image)

![Fig. 9. Normal incidence reflection of the design in Fig. 8. Solid line is the design of Fig. 1 and 2.](image)

![Fig. 10. 45 degree angle of incidence, P polarisation as in Fig. 9.](image)

![Fig. 11. 45 degree angle of incidence, S polarisation as in Fig. 10.](image)

![Fig. 12. Admittance curves as in Figures 3 and 8 at 430nm. 45 degrees angle of incidence, and S polarisation. This shows how the terminal point of the first layer and its approximations shift differently with each approximation.](image)
We conclude and have illustrated that the Herpin equivalent index and Epstein period approximations are exact at one wavelength and angle of incidence, but give different results at other angles and wavelengths. There are, in some cases, two layer approximations that are better than the symmetric equivalent. Any intermediate index can be theoretically replaced in detail performance by a combination of many layers of bounding indices to any desired degree of accuracy if enough of the proper finely divided layers are used to closely follow the desired admittance path.

REFERENCES